

Linked plate motion and mantle convection models of the India-Eurasia collision

Supervisors

Prof Dietmar Müller Dr Maria Seton Dr Joanne Whittaker **Collaborators** Prof Mike Gurnis (Caltech) Prof Trond Torsvik (CAS, Norway)

Sabin Zahirovic

Context: India-Eurasia collision

- Breakup of Gondwana
- India-Eurasia collision ~70 and 35 Ma
- Why study the area?
 - Significant impacts on NW Australian margin evolution
 - Ocean circulation Tethyan ocean basins
 - Uplift of Himalayas and Tibet affecting climate
 - Regional tectonics, deformation, volcanism, etc.

Conventional model of collision

Greater India

-50-40-30-20-10 0 10 20 30 40 50

Conventional model of collision

20 40 60 80 100 120 140 160 180 200 220 240 260 2 Age of Oceanic Lithosphere [m.y.]

Geological responses to continental colision

- ~60 Ma: Transhimalayan granitoid emplacement
- ~40 Ma: High P/T metamorphism near Mt Everest
- ~34 Ma: Red River Fault activation
- ~32 Ma: South China Sea spreading
- ~20 Ma: Accelerated uplift of Tibet

Rotation models of India

Muller et al. (2008a) Lee & Lawver (1995) Molnar & Stock (2009) Patriat & Achache (1984)

Cande & Kent (1995) timescale

Evidence for a back-arc

- Ophiolites within suture zone
- Seismic tomography
- Magmatic "gap"

Van der Voo et al. (1999)

Alternative Scenario

Methodology – Kinematics

- Implement plate motion models in GPlates, only change pre-collision margins
- 2. Generate seafloor age-grids
- 3. Export plate velocities

www.gplates.org

Methodology – Geodynamics

- 4. Specify parameters viscosity, etc.
- 5. Generate initial conditions
- 6. Run global 4D CitcomS thermo-chemical models

Model parameters

30-60X viscosity contrast between upper and lower mantle insufficient to maintain slabs at mid-mantle depths as observed in seismic tomography
240 - 140 Ma: Initialisation, introduce mantle heterogeneities
140 - 0 Ma: Model run

>CPU hours: ~20,000 per model run (~14 days on 96 processors)

Results: Conventional model of the collision

Results: Alternative model of the collision

Results - Comparison

Upper mantle: 3 cm/yr Lower mantle: 1.2 cm/yr

where A is the age of the subducted material in Myr, z is the depth of the borizontal tomography slice in km, and m_{cos} and m_{cos} are the sinking rates applied to the upper and lower mantle respectively in mm/yr. Advantages and disadvantages of method

Advantages

- Can implement and test multiple scenarios easily and interactively in GPlates
- Global 4D spherical shell mantle convection
- Control over all thermo-chemical parameters
- Output timesteps study evolution of subduction
- Output dynamic topography

Disadvantages

 Difficulty in maintaining continuous slabs when subduction zone migrates QUICKLY (being addressed in new CitcomS workflow)

Main findings

- Chronology TWO events
 - 60 Ma collision between Greater India and island arc to emplace ophiolites, initial drop in convergence rate
 - 60-40 Ma subduction of back-arc to emplace Transhimalayan Granitoids
 - 40 Ma continent-continent collision triggering major responses in geology, including sudden drop in convergence
- Alternative scenario (with back-arc) better accounts for slab material in tomography
 - Volumetrically
 - Laterally
 - Vertically

CitcomS Resolution

Figure 4.9. Equidistant distribution of mesh nodes in CitcomS distributed in 12 diamondshaped caps [left], with a specific example of one cap with low-resolution 9×9 surface mesh

	Resolution	Surface: 33 mesh Vertical: 33 levels	Surface: 129 mesh Vertical: 65 levels
Vertical	Upper mantle	44 km	26.4 km
	Lower mantle	124 km	56 km
Lateral	Surface	225 km	58 km
	Core-mantle boundary	123 km	31 km
	Total mesh nodes	431,244	12,979,980

Table 4.2. Vertical and lateral mesh resolution in CitcomS models

CitcomS Parameters

Table 4.3. CitcomS model parameters

Constant variables			
Reference density, ρ_0	3340 kg/m ³		
Reference viscosity, η_0	1×10^{21} Pa s		
Thermal diffusivity, κ	$1 \times 10^{-6} \text{ m}^2/\text{s}$		
Coefficient of thermal expansion, α	$3 \times 10^{-5} \text{ K}^{-1}$		
Earth radius, <i>R</i>	6371 km		
Rayleigh number, Ra	2.4×10^{8}		
Gravitational acceleration, g	9.81 m/s ²		
Thermal gradient, ΔT	944 K		